关于我校参与提名2024年度兵团科学技术奖励成果的公示

发布者:蔡永斌发布时间:2024-12-24浏览次数:43

据《新疆生产建设兵团科学技术奖励办法实施细则》(兵科发〔202411号)和《新疆生产建设兵团科学技术奖励办法》(新兵发〔202422号)要求,为加强社会监督保证提名材料的真实和准确。现将我单位参与申报的项目进行公示:

参与新疆生产建设兵团农业技术推广总站申报的2024年新疆生产建设兵团科学技术进步一等奖1项,提名项目《玉米高产“奇台农场模式”创建与推广应用》,杨云山(排名第九)石河子大学作为第完成单位。现将该成果名称、推荐单位意见、成果简介、主要知识产权证明目录、主要完成人情况、主要完成单位等予以公示,详见附件。

自公布之日起,任何单位和个人对公示项目如有异议,请以书面形式提出。以单位名义提出异议的,应当加盖本单位公章;个人提出异议的,应当签署真实姓名、工作单位和联系方式。并提供相应的证明材料,我校按规定对其身份予以保护。对异议的项目所涉及人员进行核实、查证,保证实事求是、公正地处理异议,凡匿名异议和超出期限的异议不予受理。

公示时间:20241223日至1229

科研处成果办电话:2058190

    

                         

                                       石河子大学

                                         20241223


项目名称玉米高产“奇台农场模式”创建与推广应用

提名意见该项目针对新疆不同区域生态特点,构建光温水资源优势区、高温干旱区、冷凉区和南疆复播区玉米密植精准调控高产技术模式,重点围绕玉米高产潜力突破及生理机制、多类型区高产模式构建、技术推广模式创新及实现大面积均衡高产等开展了大量的研究,形成了玉米生产的“奇台农场模式”项目已取得了重大突破和创新,为现代玉米生产理念和技术发展提供依据和借鉴,在全疆及西北玉米灌溉区大面积推广应用,引领了全国玉米生产技术的发展经济、社会和生态效益巨大,对推动兵团科技进步、自主创新和产业发展发挥了积极的作用。提名该项目为兵团科技进步奖一等奖。

提名单位新疆生产建设兵团农业农村局

提名等级:兵团科学技术进步奖一等

项目简介项目从2016年起至20249年期间,重点围绕玉米高产潜力突破及生理机制、多类型区高产模式构建、技术推广模式创新及实现大面积均衡高产等开展了大量的研究,形成了玉米生产的“奇台农场模式”,为现代玉米生产理念和技术发展提供依据和借鉴,引领了全国玉米生产技术的发展。主要技术创新如下:

1)创新了密植高产玉米抗倒伏技术。创新了密植高环境压力品种鉴选技术与平台,筛选出抗倒伏玉米品种,实现以“种”防倒;阐明基部2-5茎节伸长、物质充实及强度形成与整株抗倒性的关系,建立了6-8展叶期定向化控“矮下促上”(穗下节矮化,穗上节反弹伸长)技术,提高基部节间穿刺强度31.6-53.1%、降低穗位高18.9-26.8%,结合宽窄行种植,增加群体中下部光辐射量,显著降低田间倒伏率,实现以“技”抗倒。

2)创新了密植高产玉米群体高整齐度构建技术。明确了滴水时间和滴水量与出苗率、出苗整齐度间的定量关系,提出播种后2天内滴出苗水,缩小苗带土壤墒情差异,缩短出苗间隔期,保苗率可由85%提升至96%以上,株高整齐度由6.3提高至19.0,使密植群体空秆率降低到2%以下,有效抑制了增密种植株间竞争加剧导致的群体整齐度和成穗率降低。将滴水齐苗与机械化精细整地、导航精量播种相结合,破解了密植群体整体度差导致的空秆和大小穗问题。

3)创新了密植高产玉米资源高效利用技术。揭示了玉米大喇叭口期与乳熟期两个养分吸收高峰的“双峰”规律,明确了叶面积指数与群体蒸散量的关系及高产群体耗水规律,阐明滴灌量和滴次间隔对玉米生长发育、产量形成和水分利用效率的影响,创新水肥后延、按需分次、局部定向供给的水肥高效施用模式。根据构建的区域产量目标与水肥需求关系定量模型,制定了西北灌溉玉米区水肥施方案,将水分生产效率由1.8 kg m-3提升至2.95 kg m-3,氮料利用率从35%提高到65.9%

4)创建了玉米密植精准调控高产技术模式。以密植高质量群体构建和水肥精准调控为核心,集成耕层优化构建、耐密品良种鉴选、种子精准包衣、导航精量播种、株行优配、滴水齐苗、精准化控、水肥精准调控、一喷多促等关键技术,实现“保苗齐、促健株、足穗数、增粒重”全程多目标精准调控,创建了西北灌溉区玉米密植高产精准调控技术,即奇台农场模式。针对新疆不同区域生态特点,构建光温水资源优势区、高温干旱区、冷凉区和南疆复播区玉米密植精准调控高产技术模式,挖掘玉米高产潜力,提高光温水肥资源利用效率和抗逆能力,在全疆及西北玉米灌溉区大面积推广应用。

代表性论文和专著目录:

  1. Xu, W., Liu, C., Wang, K., Xie, R., Ming, B., Wang, Y., Zhang, G., Liu, G., Zhao, R., Fan, P., Li, S., Hou, P. 2017. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China.Field Crops Research, 212,126-134.

  2. Liu, G, Hou, P, Xie, R., Ming, B., Wang, K., Xu, W., Liu, W., Yang, Y., Li, S. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1. Field Crops Research,213, 221-230.

  3. Liu, G., Hou, P., Xie, R., Ming, B., Wang, K., Liu, W., Yang, Y., Xu, W., Chen, J., Li, S., 2019. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Science, 59, 1236-1247

  4. Liu, G., Zhang, G., Hou, P., Liu, Y., Li, J., Ming, B., Xie, R., Wang, K., Li, S.2020. Weak border effects and great uniformity increase yield of maize (Zea mays) under dense population. Crop & Pasture Science, 71, 653-659.

  5. Liu, G., Yang, Y., Liu, W., Guo, X., Xue, J., Xie, R., Ming, B., Wang, K., Hou, P., Li, S. 2020. Leaf removal affects maize morphology and grain yield. agronomy, 10(2): 269, 1-12.

  6. Liu, G., Liu, W., Yang, Y., Guo, X., Zhang, G., Li, J., Xie, R., Ming, B., Wang, K., Hou, P., Li, S. 2020. Marginal superiority of maize: an indicator for density tolerance under high plant density. Scientific Reports, 10, 15378, 1-6.

  7. Liu, G., Yang, H., Xie, R., Yang, Y.,Liu, W., Guo, X., Xue, J.,Ming, B., Wang, K., Hou, P., Li, S. 2021. Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China. Field Crops Research, 270, 108223.

  8. Liu, G., Yang, Y.,Liu, W., Guo, X., Xie, R.,Ming, B., Xue, J., Zhang, H.Q., Li, R.F., Wang, K., Hou, P., Li, S. 2022. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security,

  9. Liu, G., Liu, W., Hou, P., Ming, B., Yang, Y., Guo, X., Xie, R., Wang, K., Li, S. 2021. Reducing maize yield gap by matching plant density and solar radiation. Journal of Integrative Agriculture, 20(2), 363–370.

  10. Liu, G., Yang, Y., Guo, X., Liu, W., Xie, R., Ming, B.,Xue, J., Wang, K., Li, S.Hou, P., 2022. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Research, 283 (2022) 108544.

  11. Liu, G., Yang, Y., Guo, X., Liu, W., Xie, R., Ming, B.,Xue, J., Wang, K., Li, S.Hou, P., 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha−1. Resources, Conservation and Recycling. 188,106656.

  12. Liu, W., Hou, P., Liu, G., Yang, Y., Guo, X., Ming, B., Xie, R., Wang, K., Liu, Y., Li, S., 2020. Contribution of total dry matter and harvest index to maize grain yieldA multisource data analysis. Food and Energy Security,9 (4), e256.

  13. Liu, W., Ming, B., Xie, R., Liu, G., Wang, K., Yang, Y., Guo, X., Hou, P., Li, S., 2020. Change in maize final leaf numbers and its effects on biomass and grain yield across China. Agriculture, 10, 411

  14. Liu, W., Liu, G., Yang, Y., Guo, X., Ming, B., Xie, R., Liu, Y., Wang, K., Hou, P., Li, S., 2021. Spatial variation of maize height morphological traits for the same cultivars at a large agroecological scale. European Journal of Agronomy, 130, 126349.

  15. Liu, W., Liu,Y., Liu, G., Xie,R., Ming,B., Yang,Y., Guo, X., Wang,K. Xue, J., Wang,Y., Zhao, R., Zhang, W., Wang, Y., Bian, S., Ren, H., Zhao, X., Liu, P., Chang, J., Zhang, G., Liu, J., Yuan, L., Zhao, H., Shi, L., Zhang, L., Yu, L., Gao, J., Yu, X., Wang, Z., Shen, L., Ji, P., Yang, S., Zhang, Z., Xue, J., Ma, X., Wang, X., Lu, T., Dong, B., Li, G., Ma, B., Li, J., Deng, X., Liu, Y., Yang, Q., Jia, C., Chen, X., Fu, H., Li, S., Hou, P., 2022. Estimation of maize straw production and appropriate straw return rate in China. Agriculture, Ecosystems and Environment, 328, 107865.

  16. Liu, W., Jia, B., Baloch, N., Sun, Y., Liu, G., Yang, Y., Guo, X., Ming, B., Xie, R., Wang, K., Li, S., Hou, P., 2023. Spatial distribution of maize grain quality and its influence by climatic factors across China. Agronomy Journal, 115, 2439-2450.

  17. Yang, Y., Xu, W., Hou, P., Liu, G., Liu, W., Wang, Y., Zhao, R., Ming, B., Xie, R., Wang, K., Li, S., 2019. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, 9, 3635.

  18. Yang, Y., Guo, X., Hou, P., Xue, J., Liu, G., Liu, W., Wang, Y., Zhao, R., Ming, B., Xie, R., Wang, K., Li, S. 2020. Quantitative effects of solar radiation on maize lodging resistance mechanical properties. Field Crops Research, 2020, 255, 107906.

  19. Yang, Y., Guo, X., Liu, H., Liu, G., Liu, W., Ming, B., Xie, R., Wang, K.,Hou, P., Li, S. 2021. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. Journal of Integrative Agriculture, 20(2), 482–493

  20. Yang, Y., Guo, X., Liu, G., Liu, W., Xue, J., Ming, B., Xie, R., Wang, K., Hou, P., Li, S., 2021. Solar Radiation Effects on dry matter accumulations and transfer in maize. Frontiers in Plant Science, 12, 1927.

  21. Yang, Y., Liu, G.,Guo, X., Liu, W., Xue, J., Ming, B., Xie, R., Wang, K., Hou, P., Li, S., 2022. Quantitative Relationship Between Solar Radiation and Grain Filling Parameters of Maize. Frontiers in Plant Science, 13, 906060.

  22. Yang, Y., Liu, G.,Guo, X., Liu, W., Xue, J., Ming, B., Xie, R., Wang, K., Hou, P., Li, S., 2022.

Effect mechanism of solar radiation on maize yield formation. Agriculture, 12, 2170.

  1. Guo, X., Yang, Y., Liu, H., Liu, G., Liu, W, Wang, Y., Zhao R., Ming B., Xie R., Wang K., Hou P., Xiao C., Li S., 2021. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them. Crop Science.61,1414-1425.

  2. Guo, X., Yang, Y., Liu, H., Liu, G., Liu, W, Wang, Y., Zhao R., Ming B., Xie R., Wang K.,Li S., Hou P., 2022. Effects of solar radiation on dry matter distribution and root morphology of high yielding maize cultivars. Agriculture, 12, 299.

  3. Guo, X., Liu, W., Yang, Y., Liu, G., Ming, B., Xie, R., Wang, K., Li, S., Hou, P., 2023. Matching light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture. .

  4. Zhang, L., Liu, G., Yang, Y., Guo, X., Jin, S., Xie, R., Ming, B., Xue, J., Wang, K., Li, S., Hou, P., 2023. Root characteristics for maize with the highest grain yield potential of 22.5 Mg ha−1in China.Agriculture.13(4), 765.

主要完成人:李少昆,薛军,张万旭,明博,张国强,宣立中,王克如,宋敏,杨云山,贾文明,陈江鲁,刘强,孙志远。

主要完成单位:新疆生产建设兵团农业技术推广总站、中国农业科学院作物科学研究所、中国农业科学院西部农业研究中心、石河子大学、新疆生产建设兵团第六师农业科学研究所、昌吉回族自治州农牧业技术推广中心、第四师农业科学研究所、第六师奇台农场农业和林业草原中心、伊犁哈萨克自治州农业科学研究所、伊犁哈萨克自治州塔城地区农业技术推广中心。